<u>DIRECTIONS</u>: Give the common difference and supply the missing terms for each arithmetic sequence.

 1. 3, 7, 11, 15, <u>19</u>, <u>23</u>
 2. 21, 15, 9, 3, <u>-3</u>, <u>-9</u>

 D: 4
 D: -6

 3. 7, 10, <u>13</u>, 16, 19, <u>22</u>
 4. <u>-25</u>, <u>0</u>, 25, 50, 75, 100

 D: 3
 D: 25

DIRECTIONS: Give the common ratio and supply the missing terms for each geometric sequence.

5.
$$3, 6, 12, 24, \underline{?}, \underline{?}$$
 6. $1, -2, 4, -8, \underline{?}, \underline{?}$

 R: 2
 R: -2

 7. $\frac{1}{100}, \frac{1}{10}, \underline{?}, 10, 100, \underline{?}$
 8. $\underline{?}, \underline{?}, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}$

 R: 10
 R: 1/3

<u>DIRECTIONS</u>: Write the first four terms of the sequence with the given formula. Also write if the sequence is **arithmetic**, **geometric**, or **neither**.

9. $a_n = 1 - 2n$	10. $a_n = \frac{1}{n+1}$
-1, -3, -5, -7; arithmetic	$\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$; neither
11. $a_n = 3^n$	12. $a_n = n^2 - 1$
3, 9, 27, 81; geometric	0, 3, 8, 15; neither

<u>DIRECTIONS</u>: Give the next two terms of each sequence by using the pattern in the differences between terms.

13. 8, 9, 11, 14, <u>18</u>, <u>23</u> **14.** 5, 7, 11, 17, <u>25</u>, <u>35</u>

<u>DIRECTIONS</u>: Write if the sequence is **arithmetic**, **geometric**, or **neither**. Then supply the missing terms of the sequence.

15. 20, 17, 14, 11, <u>8</u> , <u>5</u>	16. 5, 9, 13, 17, <u>21</u> , <u>25</u>	17. 1, 5, 25, 125, <u>625</u> , <u>3125</u>
arithmetic	arithmetic	geometric
18. 256, 64, 16, 4, <u>1</u> , <u>1/4</u> geometric	19. 18, 22, 26, <u>30</u> , 34, <u>38</u> arithmetic	20. 4, <u>0</u> , -4, -8, -12, <u>-16</u> arithmetic
geometric	untillictic	untilinetie

DIRECTIONS: Write if the sequence is arithmetic, geometric, or neither. Then supply the missing terms of the sequence.

21.
$$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \underline{1/25}, \underline{1/36}$$

neither
22. $32, -16, 8, -4, \underline{2}, \underline{-1}$
geometric
23. $4^{1/2}, 4^{3/2}, 4^{5/2}, 4^{7/2}, \underline{4^{9/2}}, \underline{4^{11/2}}$
24. $\frac{1}{12}, \frac{2}{13}, \frac{3}{14}, \frac{4}{15}, \underline{5/16}, \underline{6/1}$

24.
$$\frac{1}{12}, \frac{2}{13}, \frac{3}{14}, \frac{4}{15}, \frac{5/16}{16}, \frac{6/17}{17}$$

neither

DIRECTIONS: Find the first four terms of the sequence with the given formula. Then write if the sequence is arithmetic, geometric, or neither.

25. $a_n = 4n + 3$	26. $a_n = 2n + 1$	27. $a_n = 3^{n+1}$
7, 11, 15, 19; arithmetic	3, 5, 7, 9; arithmetic	9, 27, 81, 243; geometric
28. $a_n = 2 \bullet 3^n$	29. $a_n = \frac{(-2)^n}{8}$	30. $a_n = 13 - 4n$
6, 18, 54, 162; geometric	$-\frac{1}{4}, \frac{1}{2}, -1, 2;$ geometric	9, 5, 1, –3; arithmetic

31. $a_n = \log(n + 1)$	32. $a_n = \log 10^n$
log 2 , log 3 , log 4 , log 5; neither	1, 2, 3, 4; arithmetic

<u>DIRECTIONS</u>: Find the next two terms of each sequence by using the pattern in the differences between terms.

34. 2, 4, 8, 14, 22, 32, 44	35. -3, 1, 9, 21, 37, 57, 79	36. 60, 48, 38, 30, 24, 20, 18
37. 24, 23, 21, 17, 9, −7, −39	38. 1, 3, 7, 15, 31, 63, 127	39. 0, 1, 4, 13, 40, 121, 364
40. 1, 2, 6, 15, 31, 56, 92	41. 1, 1, 2, 3, 5, 8, 13, 21, 34	

(#41 is called the Fibonacci Sequence – each term is the sum of the two terms before it. This is one of the most famous sequences in all of mathetmatics!)